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Abstract: We consider high energy collisions of two shock waves in AdS5 as a model of

ultrarelativistic nucleus-nucleus collisions in the boundary theory. We first calculate the

graviton field produced in the collisions in the NLO and NNLO approximations, corre-

sponding to three- and four-graviton exchanges with the shock waves. We then consider

the asymmetric limit where the energy density in one shock wave is much higher than in

the other one. In the boundary theory this setup corresponds to proton-nucleus collisions,

with the nucleus being the denser of the two shock waves and the proton being the less

dense one. Employing the eikonal approximation we find the exact high energy analytic

solution for the metric in AdS5 for the asymmetric collision of two delta-function shock

waves. The solution resums all-order graviton exchanges with the “nucleus” shock wave

and a single-graviton exchange with the “proton” shock wave. Using the holographic renor-

malization prescription we read off the energy-momentum tensor of the matter produced

in proton-nucleus collisions. We show in explicit detail that in the boundary theory the

proton is completely stopped by strong-coupling interactions with the nucleus, in agree-

ment with our earlier results [1]. We also apply the eikonal technique to the asymmetric

collision of two unphysical delta-prime shock waves, which we introduced in [1] as a means

of modeling nuclear collisions with weak coupling initial dynamics. We obtain a surprising

result that, for delta-prime shock waves, the multiple bulk graviton exchange series giving

the leading energy-dependent contribution to the energy-momentum tensor terminates at

the order of two graviton exchanges with the nucleus.
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1 Introduction

In this paper we continue our earlier investigation [1] of colliding shock waves in AdS5.

Due to the Anti-de Sitter space/conformal field theory (AdS/CFT) correspondence [2–5],

the problem of two colliding gravitational shock waves, while an important problem from

the standpoint of gravity theory [6–9], may also be relevant for high energy hadronic and

nuclear collisions at strong coupling [10–14].

One of the most important problems in the field of ultrarelativistic heavy ion collisions

is the one of isotropization and thermalization of the produced medium. There is a growing

consensus in the heavy ion community that the medium produced in heavy ion collisions
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at RHIC is strongly coupled [15–23]. The challenge for the theoretical community is to

understand

(i) how the medium, which is initially very anisotropic with zero or negative longitudinal

component of the energy-momentum tensor [24–29], evolves into an isotropic medium

described by ideal (Bjorken [30]) hydrodynamics, and

(ii) why this transition happens over extremely short time scale of 0.3 ÷ 0.6 fm/c, as

required by hydrodynamic simulations [15–22].

There is also a widespread belief in the community, supported by a broad range of

phenomenological evidence, that the very early stages of heavy ion collisions are weakly-

coupled, i.e., they are described by the physics of Color Glass Condensate (CGC)/parton

saturation [24, 26, 31–47] (for a review of CGC see [48–50]). It appears that the system

produced in heavy ion collisions evolves with time from the weakly-coupled CGC state to

the strongly coupled quark-gluon plasma (QGP) described by the ideal hydrodynamics.

There are two types of transitions that the system has to undergo in order for such process

to take place. First of all, at some point in time the system should undergo a transition

from weak coupling to strong coupling. Second of all, at a (presumably) different time

the system will evolve from the anisotropic early state, in which transverse and longitudi-

nal pressure components in the energy-momentum tensor are drastically different, to the

isotropic later state, in which all pressure components are equal (or almost equal) to each

other, as required by the ideal (viscous) hydrodynamics. We will refer to the latter transi-

tion as the isotropization transition. The isotropization transition is a necessary condition

for the thermalization of the produced medium.

In this work we will assume that the isotropization transition takes place after the

strong coupling transition. Hence we will study the onset of the isotropization in the

strongly-coupled framework. Since strong coupling dynamics in QCD is prohibitively com-

plicated, especially for the ultrarelativistic processes at hand, we will employ AdS/CFT cor-

respondence, assuming that the bulk properties of the collisions and the produced medium

in N = 4 super-Yang-Mills theory are not too different from QCD and would allow us to

make conclusions which are at least qualitatively applicable to the real life.

Attempts to study isotropization and thermalization in the AdS/CFT framework have

been made before. A gravity-dual of Bjorken hydrodynamics was constructed in [51–55].

To obtain it the authors of [51] assumed that the medium produced in heavy ion collisions is

rapidity-independent. Imposing a no-singularities requirement [51] (or simply demanding

that the metric is real [28]) one then obtains the asymptotic late-time geometry corre-

sponding to Bjorken hydrodynamics. However, this result by itself does not prove that

Bjorken hydrodynamics is a consequence of a heavy ion collision. In other words, it is

not clear which early-time dynamics (or, in general, which events in the past) lead to this

dual-Bjorken geometry.

To address this problem, by analogy with the perturbative approaches [24, 25, 37, 56], it

was suggested in [10] that one should study collisions of two shock waves in AdS space: fol-

lowing the dynamics of the strongly-coupled medium produced in such collisions one would
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be able to see how the ideal hydrodynamic state is reached by the medium and whether this

late-time state is rapidity-independent. In [11] the case of shock wave collisions in the 1+1

dimensional boundary theory was considered and solved exactly in AdS3 geometry. Unfor-

tunately the lower dimensionality of the problem severely limits the physical behavior of

the produced medium, and does not allow to formulate the problem of isotropization. The

case of realistic 1+3 boundary theory was first addressed in [12] using AdS5 space with the

infinitely-thin delta-function shock waves. The authors of [12] constructed a perturbative

series for the energy-momentum tensor of the produced strongly coupled matter.

In [1] we generalized the results of [12] by solving Einstein equations in a more general

framework, which does not depend on the exact profile of the shock waves, i.e., whether they

are delta-functions or some other objects with finite extent. We identified the perturbation

series of [12] with a series in bulk graviton exchanges with two shock waves (see e.g. figure 2

below for an example of a term contributing to the series). Most importantly, in [1] it was

argued that in a collision of any two physical shock waves, they stop shortly after the

collision, possibly forming a black hole. In the boundary theory this behavior corresponds

to the colliding nuclei stopping shortly after the collision, probably leading to Landau

hydrodynamics description of the system [57]. Such complete nuclear stopping would lead

to complete stopping of the baryon number carried by the nuclei. As such a complete

baryon stopping is not observed at RHIC (and, in fact, baryon stopping at mid-rapidity at

RHIC is rather small [58] in accord with perturbative calculations [59, 60]), this indicates

that colliding shock waves may not be adequate for the description of realistic nuclear

collisions in AdS. Indeed, an AdS description would apply if the collisions were strongly-

coupled at all times: as the early stages of RHIC heavy ion collisions are weakly coupled,

an AdS/CFT description of the collision at all times can not be valid. In an attempt to

resolve the issue we suggested in [1] that one could use unphysical shock waves with the

delta-prime profile. Such shock waves appear to have no stopping. It is possible that

using delta-prime shock waves as external sources for the AdS/CFT correspondence would

yield a more realistic description of heavy ion collisions, and would allow one to tackle the

problem of isotropization in the strongly-coupled framework.

In this paper we further explore shock wave collisions. In section 2 we extend the

expansion in graviton exchanges from [1] to two higher orders. We calculate the next-to-

leading order (NLO) and next-to-next-to-leading order (NNLO) corrections to the result

of [1] for both delta-function and delta-prime shock waves (see eqs. (2.30 and (2.35), along

with eq. (2.39)).

We continue in section 3 by constructing the resummation procedure in which gravi-

ton exchanges with one shock wave are resummed to all orders while the interaction with

another shock wave is restricted to a single graviton exchange (see figure 6 below). The

diagrams are analogous to those resummed in the study of classical gluon fields produced in

proton-nucleus collisions in the perturbative CGC framework [61–65] (see [50] for a review).

We apply the eikonal approximation to Einstein equations, which allows us to construct

an exact solution for the energy-momentum tensor of the produced medium in the case

of delta-function shock waves, given in eq. (3.38). (Eikonal approximation in AdS/CFT

was studied before in [66–70]). Our solution would receive energy-suppressed corrections
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if shock waves of finite width are considered. We note that the energy-momentum ten-

sor (3.38) is not that of ideal hydrodynamics, indicating that the system does not reach

isotropization/thermalization in proton-nucleus approximation to the collision. Resum-

ming graviton exchanges with the nucleus shock wave to all orders allows us to demon-

strate the stopping of the proton shock wave explicitly. The relevant component of the

energy-momentum tensor of the proton in shown in eq. (3.45): one can explicitly see that

it goes to zero as the light cone coordinate x+ (in which direction the proton was initially

moving) is increasing.

We also apply the eikonal treatment to the delta-prime shock waves. The results

are quite interesting: we show that in the eikonal approximation the series in graviton

exchanges terminates at the level of two graviton exchanges with the nucleus shock wave.

Thus the NLO result for the energy-momentum tensor is, in fact, exact for the case of

proton-nucleus collisions! The energy-momentum tensor for delta-prime shock waves is

shown in eq. (3.71). It is clear from eq. (3.71) that the produced medium distribution

has a strong rapidity dependence. Therefore it seems unlikely that rapidity-independent

Bjorken hydrodynamics geometry of [51] could result from a collision of two shock waves in

AdS5 space, though indeed a further study of the full nucleus-nucleus scattering problem

is needed to unambiguously answer this question.

We will conclude in section 4 by summarizing our main results.

2 Perturbative expansion in graviton exchanges

2.1 General setup

Consider a collision of two ultrarelativistic nuclei. Assume for simplicity that the nuclei

have infinite transverse extent and the same longitudinal thickness at all impact parame-

ters. The energy-momentum tensors of the two nuclei can be written as 〈T1−−(x−)〉 and

〈T2 ++(x+)〉 with the brackets 〈. . .〉 denoting the averaging in the nuclear wave functions

and the light cone coordinates defined by x± = (x0 ±x3)/
√

2 where x3 is the collision axis.

The geometry of the collision is shown in figure 1.

As was argued in [51], the geometry in AdS5 dual to each one of the nuclei in the

boundary theory is given by the following metric

ds2 =
L2

z2

{

−2 dx+ dx− + t1(x
−) z4 dx− 2 + dx2

⊥ + dz2
}

(2.1)

for nucleus 1 and by

ds2 =
L2

z2

{

−2 dx+ dx− + t2(x
+) z4 dx+ 2 + dx2

⊥ + dz2
}

(2.2)

for nucleus 2. Here dx2
⊥ = (dx1)2 + (dx2)2 with x1 and x2 the transverse dimensions which

we will denote using Latin indices, e.g. xi. L is the curvature radius of the AdS5 space and

z is the coordinate describing the 5th dimension with the boundary of the AdS space at

z = 0. We have also defined

t1(x
−) ≡ 2π2

N2
c

〈T1−−(x−)〉 (2.3)
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− +

x3

Figure 1. The space-time picture of the ultrarelativistic heavy ion collision in the center-of-mass

frame. The collision axis is labeled x3, the time is x0.

and

t2(x
+) ≡ 2π2

N2
c

〈T2++(x+)〉 (2.4)

in accordance with the prescription of holographic renormalization [71]. The metrics in

eqs. (2.1) and (2.2) are exact solutions of Einstein equations in the empty AdS5 space

Rµν +
4

L2
gµν = 0. (2.5)

Our goal is to construct the geometry in AdS5 dual to the collision of two shock waves

given by eqs. (2.1) and (2.2). In [1] we argued that the single shock wave metric in eq. (2.1)

(or in eq. (2.2)) corresponds to the single-graviton exchange between the source nucleus

at the boundary and the point in the bulk where the metric is measured. The solution of

Einstein equations (2.5) for the collision of two shock waves can therefore be represented

as a sum of tree-level graviton exchange diagrams, as shown in figure 2. There the source

nuclei are represented by thick crosses, with nucleus 1 given by the crosses on the top, and

nucleus 2 given by the crosses at the bottom. As was argued in [1], each rescattering in

nucleus 1 brings in a factor of t1(x
−) into the metric, while each rescattering in nucleus 2

brings in a factor of t2(x
+). The large thin cross in figure 2 denotes the point in the bulk in

the argument of the metric, i.e., the point where the metric is “measured”. One encounters

similar diagrams but with gluons and in 4 dimensions for nuclear collisions in the framework

of McLerran-Venugopalan (MV) model [32–34], as was worked out in [37, 38, 41, 56, 61, 72].

Inspired by the graviton-exchange analogy of figure 2 we write the metric dual to the

full collision as [1]

ds2 =
L2

z2

{

− 2dx+dx− + dx2
⊥ + dz2 + t1(x

−)z4dx−2 + t2(x
+)z4dx+2 + o(t1t2)

}

. (2.6)

– 5 –
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t 2

t 1 t 1 t 1

t 2 t 2t 2

t 1 t 1

Figure 2. Diagrammatic representation of the solution of classical Einstein equations for the

collisions of two shock waves. The wavy lines denote graviton exchanges between the sources at

the boundary (thick crosses) and the bulk. The large cross denotes the point in the bulk where

one measures the metric. The upper row of thick crosses denotes rescatterings in nucleus 1, each

of which generates a factor of t1. The lower row of thick crosses denotes rescatterings in nucleus 2,

each of which generates a factor of t2.

Indeed the interesting unknown part of the answer is in the term denoted o(t1 t2) in eq. (2.6):

this term comprises all higher order graviton exchanges, i.e., higher powers of t1(x
−) and

t2(x
+). The first term in this expansion, the term proportional to t1 t2 was found in [1]. For

a particular form of t1(x
−) and t2(x

+) given by delta-functions, the expansion to several

higher orders in t1 and t2 was constructed in [12].

To construct a series in graviton exchanges for a general form of t1 and t2 and to set

up the general problem we write

ds2 =
L2

z2

{

−
[

2 +G(x+, x−, z)
]

dx+ dx− +
[

t1(x
−) z4 + F (x+, x−, z)

]

dx− 2

+
[

t2(x
+) z4 + F̃ (x+, x−, z)

]

dx+ 2 + [1 +H](x+, x−, z) dx2
⊥ + dz2

}

. (2.7)

The unknown functions F (x+, x−, z), F̃ (x+, x−, z), G(x+, x−, z), and H(x+, x−, z) contain

all higher powers of t1 and t2. Note that as eq. (2.1) and eq. (2.2) are exact solution of

Einstein equations (2.5), the functions F , F̃ , G, and H contain at least one power of t1
and t2 each [1].

Substituting the metric of eq. (2.7) into Einstein equations (2.5) yields a very com-

plicated system of non-linear equations. It is likely that the solution of these equations is

only possible numerically. Here we will build on the results of [1] to construct the first few

steps of the perturbative expansion: we will construct the next-to-leading order (NLO) and

the next-to-next-to-leading order (NNLO) corrections to F , F̃ , G and H. NLO corrections

resum terms containing t21t2 and t1t
2
2, while NNLO corrections include terms with t31t2,

t21t
2
2 and t1t

3
2. (The powers of t1 and t2 should not be taken literally, they only indicate

– 6 –
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the number of times t1 and t2 enter the expression.) In section 3 we will use the eikonal

approximation to resum one power of t1 and all powers of t2.

Before we start the calculations let us first point out that, according to the prescription

of holographic renormalization [71], if we expand the unknown coefficients of the metric in

eq. (2.7) into a series in powers of z2

F (x+, x−, z) = z4
∞
∑

n=0

Fn(x+, x−) z2 n, F̃ (x+, x−, z) = z4
∞
∑

n=0

F̃n(x+, x−) z2 n,

G(x+, x−, z) = z4
∞
∑

n=0

Gn(x+, x−) z2 n, H(x+, x−, z) = z4
∞
∑

n=0

Hn(x+, x−) z2 n, (2.8)

then the expectation value of the energy-momentum tensor of the matter produced in the

collision in the boundary theory is given by the first coefficients in the expansion in eq. (2.8):

〈T++〉 =
N2

c

2π2
F0(x

+, x−) 〈T−−〉 =
N2

c

2π2
F̃0(x

+, x−)

〈T+−〉 = −1

2

N2
c

2π2
G0(x

+, x−) 〈T ij〉 =
N2

c

2π2
δij H0(x

+, x−). (2.9)

Einstein equations (2.5) impose two constraints on the energy-momentum tensor: trace-

lessness

〈T µ
µ 〉 = 0 (2.10)

and energy-momentum conservation

∂ν〈T µν〉 = 0. (2.11)

Imposing the constraints (2.10) and (2.11) on the energy-momentum tensor in eq. (2.9) we

easily see that the energy-momentum tensor can be expressed in terms of a single unknown

function:

〈T++〉 = − N2
c

2π2

∂−
∂+

H0(x
+, x−) 〈T−−〉 = − N2

c

2π2

∂+

∂−
H0(x

+, x−)

〈T+−〉 =
N2

c

2π2
H0(x

+, x−) 〈T ij〉 =
N2

c

2π2
δij H0(x

+, x−). (2.12)

Here we defined the following integrations

1

∂+
[. . .](x+) ≡

x+
∫

−∞

dx′+ [. . .](x′+),
1

∂−
[. . .](x−) ≡

x−

∫

−∞

dx′− [. . .](x′−). (2.13)

Eqs. (2.12) demonstrate that only one metric coefficient in (2.7) is needed to construct

the energy-momentum tensor of the produced matter in the boundary theory.

– 7 –
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Figure 3. Graviton diagram corresponding to the LO solution of Einstein equations found in [1].

2.2 NLO results

2.2.1 NLO calculation

To systematically include the graviton exchanges of figure 2 into the metric of eq. (2.7) we

expand the coefficients of the metric in powers of t1 and t2. We start by writing

F (x+, x−, z) = F (0)(x+, x−, z) + F (1)(x+, x−, z) + F (2)(x+, x−, z) + · · ·
F̃ (x+, x−, z) = F̃ (0)(x+, x−, z) + F̃ (1)(x+, x−, z) + F̃ (2)(x+, x−, z) + · · ·
G(x+, x−, z) = G(0)(x+, x−, z) +G(1)(x+, x−, z) +G(2)(x+, x−, z) + · · ·
H(x+, x−, z) = H(0)(x+, x−, z) +H(1)(x+, x−, z) +H(2)(x+, x−, z) + · · · (2.14)

where the superscript (0) denotes terms containing t1 t2, i.e., quadratic in t’s, the super-

script (1) denotes terms cubic in t’s (i.e., terms containing t21 t2 and t1 t
2
2), the superscript

(2) denotes terms quadric in t’s, etc. Note that the expansion in t’s in eq. (2.14) is inde-

pendent of the expansion in z’s in eq. (2.8): each term in the expansion in eq. (2.14) can

in turn be expanded in powers of z2 as was done in eq. (2.8), and vice versa.

The leading order (LO) terms in eq. (2.14) denoted by the superscript (0) were found

in [1]. For completeness let us quote the results here:

F (0)(x+, x−, z) = −λ1(x
+, x−) z4 − 1

6
∂2
−h0(x

+, x−) z6 − 1

16
∂2
−h1(x

+, x−) z8

F̃ (0)(x+, x−, z) = −λ2(x
+, x−) z4 − 1

6
∂2

+h0(x
+, x−) z6 − 1

16
∂2

+h1(x
+, x−) z8

G(0)(x+, x−, z) = −2h0(x
+, x−) z4 − 2h1(x

+, x−) z6 +
2

3
t1(x

−) t2(x
+) z8

H(0)(x+, x−, z) = h0(x
+, x−) z4 + h1(x

+, x−) z6. (2.15)

We defined [1]

h0(x
+, x−) =

8

∂2
+ ∂

2
−

t1(x
−) t2(x

+), h1(x
+, x−) =

4

3 ∂+ ∂−
t1(x

−) t2(x
+)

λ1(x
+, x−) =

∂−
∂+

h0(x
+, x−), λ2(x

+, x−) =
∂+

∂−
h0(x

+, x−). (2.16)

– 8 –
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The diagram corresponding to the LO solution given by eqs. (2.15) and (2.16) is shown in

figure 3. Note that the z4 terms in eq. (2.15) adhere to the pattern outlined in eqs. (2.12).

To find the NLO terms denoted by superscript (1) in eq. (2.14) we substitute the met-

ric (2.7) with the coefficients expanded according to eq. (2.14) into Einstein equations (2.5).

Expanding the Einstein equations to the cubic order in t’s yields the following equations

for G(1) and H(1)

(⊥⊥) G(1)
z + 5H(1)

z − z H(1)
z z + 2 z H

(1)
x+ x−

+ δ7 z
7 + δ9 z

9 + δ11 z
11 = 0 (2.17a)

(zz) G(1)
z + 2H(1)

z − z G(1)
z z − 2 z H(1)

z z + 48α7 z
7 + 80α9 z

9 + 120α11 z
11 = 0. (2.17b)

The coefficients δ7, δ9, δ11, α7, α9, α11 are known functions of t1 and t2 the exact form of

which is not important here. The subscripts z, x+ and x− indicate partial derivatives with

respect to these variables. Eqs. (2.17a) and (2.17b) are labeled according to the lowercase

Einstein equations components.

Solving eq. (2.17a) for G
(1)
z and substituting the result into eq. (2.17b) yields the

following equation for H(1)

−3H(1)
z + 3 z H(1)

z z − z2H(1)
z z z + 2 z2 H

(1)
x+ x− z

+ 12ψ7 z
7 + 16ψ9 z

9 + 20ψ11 z
11 = 0 (2.18)

with the coefficients ψ given by

ψ7 =
4

3

[

t2(x
+)λ1(x

+, x−) + t1(x
−)λ2(x

+, x−)
]

ψ9 =
3

4

[

t2(x
+)h0 x− x−(x+, x−) + t1(x

−)h0 x+ x+(x+, x−)
]

ψ11 =
3

5

[

t2(x
+)h1 x− x−(x+, x−) + t1(x

−)h1 x+ x+(x+, x−)
]

. (2.19)

To find the solution of eq. (2.18) we follow the strategy used in [1]. We first expand

H(1) into a series in powers of z2

H(1)(x+, x−, z) = z4
∞
∑

n=0

H(1)
n (x+, x−) z2 n. (2.20)

Substituting eq. (2.20) into eq. (2.18) and requiring that the coefficients at each power of

z on the left hand side are zero yields the recursion relation

H(1)
n (−2n) (2 + n) +H

(1)
n−1; x+x−

+ ψ7 δn,2 + ψ9 δn,3 + ψ11 δn,4 = 0 n ≥ 1. (2.21)

Arguing just like in [1] that causality requires the series (2.20) to terminate at some finite

order, we see that the series can only be terminated if H
(1)
4 = 0. The solution of eq. (2.18)

is thus given by

H(1)(x+, x−, z) = H
(1)
0 (x+, x−)z4 +H

(1)
1 (x+, x−)z6 +H

(1)
2 (x+, x−)z8 +H

(1)
3 (x+, x−)z10

(2.22)

with the coefficients

H
(1)
0 = − 6

(∂+ ∂−)2
ψ7 −

96

(∂+ ∂−)3
ψ9 −

2880

(∂+ ∂−)4
ψ11 (2.23a)
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Figure 4. Graviton diagrams corresponding to the NLO solution of Einstein equations found in

this section.

H
(1)
1 = − 1

∂+ ∂−
ψ7 −

16

(∂+ ∂−)2
ψ9 −

480

(∂+ ∂−)3
ψ11 (2.23b)

H
(1)
2 = − 1

∂+ ∂−
ψ9 −

30

(∂+ ∂−)2
ψ11 (2.23c)

H
(1)
3 = − 1

∂+ ∂−
ψ11. (2.23d)

Using H(1) from eq. (2.22) in eq. (2.17a) one can easily find G(1). With the help of two

other components of Einstein equations which are not shown here explicitly we can find

(and have found) F (1) and F̃ (1). The remaining components of Einstein equations do not

generate further constraints.

Note that G(1), F (1) and F̃ (1) are indeed needed to construct the metric at higher

orders in the expansion in t’s. However, as we argued above and as shown in eq. (2.12),

only H
(1)
0 is needed to obtain the energy-momentum tensor of the produced matter at

NLO. Since at NLO G(1), F (1) and F̃ (1) are not needed for the boundary theory physics

that we are interested in here, we will not present explicit expressions for these quantities.

The NLO solution in eqs. (2.22) and (2.23) is represented diagrammatically in terms of

graviton exchanges in figure 4. As shown in figure 4 the NLO solution consists of a single

rescattering in one nucleus and a double rescattering in another nucleus. As can be seen

from eqs. (2.23) and (2.19), NLO solution includes terms with two powers of t1 and one

power of t2 and terms with two powers of t2 and one power of t1.

2.2.2 Delta-function shock waves at NLO

It is instructive to find what the obtained results give for specific shock waves described

by particular forms of t1(x
−) and t2(x

+). Define the transverse pressure p of the produced

medium by

〈T i j〉 = δij p. (2.24)

Combining eq. (2.24) with eqs. (2.12) and (2.14) yields

p(x+, x−) =
N2

c

2π2

[

H
(0)
0 (x+, x−) +H

(1)
0 (x+, x−) +H

(2)
0 (x+, x−) + · · ·

]

. (2.25)
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Let us for simplicity concentrate on this component of the energy-momentum tensor: all

others can be also easily constructed using eq. (2.12).

Following the original suggestion of [51] (see also [12]) let us first consider delta-function

shock waves

t1(x
−) = µ1 δ(x

−), t2(x
+) = µ2 δ(x

+). (2.26)

As was argued in [1], the delta-function shock waves give a solution of Einstein equations

having correct qualitative features of the solution for any colliding shock waves with non-

negative t1 and t2. However, plugging the delta-functions from (2.26) into eq. (2.16) and

then into eq. (2.19) we immediately encounter a problem: we obtain products of delta-

functions and theta functions, like δ(x+) θ(x+). To properly handle those terms let us

regulate the delta-functions by spearing them along the light cone directions:

t1(x
−) =

µ1

a1
θ(x−) θ(a1 − x−), t2(x

+) =
µ2

a2
θ(x+) θ(a2 − x+). (2.27)

To be more specific let us consider in the boundary theory a collision of two ultrarelativistic

nuclei with large light-cone momenta per nucleon p+
1 , p−2 , and atomic numbers A1 and A2.

In order to avoid N2
c suppression in each graviton exchange coming from the Newton’s

constant (see e.g. eq. (2.3)) let us assume that each nucleon in the nucleus has N2
c nucleons

in it. This factor of N2
c in 〈T1−−〉 and 〈T2++〉 cancels the factor of 1/N2

c in eqs. (2.3)

and (2.4). In the end one obtains, similar to [1, 73]

µ1 ∼ p+
1 Λ2

1A
1/3
1 , µ2 ∼ p−2 Λ2

2A
1/3
2 , (2.28)

while the Lorentz-contracted widths of the nuclei are

a1 ∼ A
1/3
1

p+
1

, a2 ∼ A
1/3
2

p−2
. (2.29)

The scales Λ1 and Λ2 are the typical transverse momentum scales describing the two nu-

clei [1], similar to the saturation scales.

Using eq. (2.27) along with eqs. (2.25), (2.15), (2.16), (2.22), and (2.23a), we obtain

p(x+, x−) =
N2

c

2π2
8µ1µ2x

+x−θ(x+)θ(x−)
[

1 − 12µ1x
+(x−)2 − 12µ2(x

+)2x− + · · ·
]

. (2.30)

In arriving at eq. (2.30) we neglected terms suppressed by powers of a1/x
− and a2/x

+.

Thus eq. (2.30) is only valid when

a1

x−
≪ 1,

a2

x+
≪ 1. (2.31)

However this is not the only constraint on applicability of eq. (2.30): requiring that

o(a1/x
−, a2/x

+) corrections to the NLO terms are much smaller than LO terms, em-

ploying eqs. (2.28) and (2.29), and assuming for simplicity that p+
1 ∼ p−2 , Λ1 ≈ Λ2 ≡ Λ,

A1 ≈ A2 ≡ A, we obtain another restriction

ΛA1/3 τ ≪ 1 (2.32)
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with the proper time τ =
√

2x+ x−. Hence eq. (2.30) is valid at relatively early proper

times and acquires order-1 corrections at later times. Indeed eq. (2.30) provides an exact

solution in the formal limit of a1, a2 → 0 which reduces t1 and t2 back to the delta-function

expressions given in eq. (2.26). However, eqs. (2.28) and (2.29) demonstrate that if we

keep track of the physical origin of the delta-functions, the infinitely-thin nucleus limit

gets more involved. Of course one can always postulate the nuclei to be very thin in the

longitudinal direction while keeping their atomic numbers fixed, thus making the formal

a1, a2 → 0 limit possible: such limit is not attainable in real life, but it is a mathematically

well-defined procedure.

Eq. (2.30) agrees with the appropriate result obtained in [12] for delta-function shock

waves.

2.2.3 Delta-prime shock waves at NLO

In [1] it was argued that delta-function shock waves considered in section 2.2.2 come to a

complete stop shortly after the collision, possibly leading to a formation of a black hole.

For the boundary theory this implied that the colliding nuclei stop after the collision and

thermalize leading to Landau-like hydrodynamics [57]. This scenario would lead to strong

baryon stopping in the collisions, which is not what is observed by the experiments at

RHIC. Combined with the many successes of small-coupling based approaches in describing

RHIC data sensitive to early-time dynamics (for a review see [50]), this led us to conclude

that one can not adequately describe entire heavy ion collision within a strong coupling

framework. Thus collisions of delta-function shock waves in AdS5 are not relevant for the

heavy ion collisions, in which it is very likely that the initial stages of the collisions are

weakly-coupled. In [1] to try to mimic these weak coupling effects we suggested using

unphysical delta-prime shock waves

t1(x
−) = Λ2

1A
1/3
1 δ′(x−), t2(x

+) = Λ2
2A

1/3
2 δ′(x+). (2.33)

The shock waves in eq. (2.33) are fundamentally different from those in section 2.2.2 as

the integrals of these shock wave profiles over all x−’s and/or x+’s give zero. The shock

waves (2.33) have unphysical energy-density on the light cone. However, in the LO cal-

culations carried out in [1] it was shown that the behavior of the produced matter in the

forward light cone of a collision of two shock waves (2.33) gives a well-behaved physical

distribution of matter. This should be contrasted with the physical shock waves in sec-

tion 2.2.2, for which, due to nuclear stopping, the remnants of the colliding nuclei would

deviate from their initial light cone trajectories and drift into the forward light cone.

To use the shock waves of eq. (2.33) for calculating the NLO contribution to the

transverse pressure p we have to regulate them. We do that by rewriting (2.33) as [35, 38]

t1(x
−) = Λ2

1

A
1/3

1
∑

i=1

δ′(x− − x−i )

t2(x
+) = Λ2

2

A
1/3

2
∑

i=1

δ′(x+ − x+
i ). (2.34)
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Each delta-prime in eq. (2.34) corresponds to a thin slice of a shock wave (a “nucleon”)

localized around the longitudinal coordinate x±i . The coordinates x−i are localized to the

interval [0, a1] of the x− axis, while the coordinate x+
i are localized to the interval [0, a2]

of the x+ axis.

Employing eq. (2.34) in eqs. (2.25), (2.15), (2.16), (2.22), and (2.23a), and assuming

that A1, A2 ≫ 1, yields the transverse pressure

p(x+, x−) =
N2

c

2π2
8Λ2

1A
1/3
1 Λ2

2A
1/3
2 θ(x+) θ(x−)

{

1 − 40
[

Λ2
1A

1/3
1 + Λ2

2A
1/3
2

]

x+ x−

−36
[

Λ2
1A

1/3
1 p+

1 x
+ (x−)2 + Λ2

2A
1/3
2 p−2 (x+)2 x−

]

+ · · ·
}

. (2.35)

Eq. (2.35) is derived in appendix A. Just like with eq. (2.30), in arriving at eq. (2.35)

we have neglected terms suppressed by additional powers of energy, i.e., we assumed

the condition (2.31) to be valid. At the same time we did not have to assume that the

bound (2.32) applies.

From eq. (2.35) we see that NLO corrections in the transverse pressure are of two types:

they can be rapidity/energy-independent, like the second term in the square brackets, which

is proportional to x+ x− ∼ τ2. They can also be rapidity/energy-dependent, like the last

term in the square brackets in eq. (2.35), which is proportional to, say, (x+)2 x− ∼ τ3 eη,

where we defined the space-time rapidity η = (1/2) ln(x+/x−). That term also includes

explicit powers of the large momentum components p+
1 and p−2 , i.e., it is explicitly energy-

dependent. Indeed if p+
1 x

− ≫ 1 or p−2 x
+ ≫ 1 the last term in the square brackets of

eq. (2.35) dominates over the second term in the brackets.

2.3 NNLO results

Evaluation of the NNLO terms goes along the same lines as the NLO calculation. One

plugs the expansion of eq. (2.14) into Einstein equations (2.5) and expands the resulting

equations up to the quadric order in t’s. In particular one obtains the following equations

for G(2) and H(2)

(⊥⊥) G(2)
z + 5H(2)

z − z H(2)
z z + 2 z H

(2)
x+ x−

+ ∆7 z
7 + ∆9 z

9 + ∆11 z
11+

+∆13 z
14 + ∆15 z

15 = 0 (2.36a)

(zz) G(2)
z + 2H(2)

z − z G(2)
zz − 2 z H(2)

z z + 48A7 z
7 + 80A9 z

9 + 120A11 z
11+

+168A13 z
13 + +224A15 z

15 = 0 (2.36b)

with ∆’s and A’s being some known functions of t1 and t2. Eliminating G(2) from

eqs. (2.36a) and (2.36b) yields

−3H(2)
z + 3 z H(2)

z z − z2H(2)
z z z + 2 z2 H

(2)
x+ x− z

+ 12Ψ7 z
7 + 16Ψ9 z

9+

+20Ψ11 z
11 + 24Ψ13 z

13 + 28Ψ15 z
15 = 0 (2.37)

with

Ψ7 =
4

3

[

4h2
0 − λ1 λ2 + t1

∂+

∂−
H

(1)
0 + t2

∂−
∂+

H
(1)
0

]

(2.38a)
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Figure 5. Some of the graviton diagrams corresponding to the NNLO solution of Einstein equations

found in section 2.3.

Ψ9 =
1

4

[

− 4h0x− h0x+ + 16h0 h0 x+ x−

+
{

3 (−λ2 h0 x− x− + t2H
(1)
0x− x−

) + (x+ ↔ x−; 1 ↔ 2)
}

]

(2.38b)

Ψ11 =
1

60

[

128h0 t1 t2 + 34 (h0 x+ x−)2 − 13h0 x+ x+ h0 x− x−

+
{

36t2H
(1)
1x−x−

−10h0x+h0x+x−x− − 6λ2h0x+x−x−x− + (x+ ↔ x−; 1 ↔ 2)
}]

(2.38c)

Ψ13 =
1

576

[

768 t1 t2 h0 x+ x− − 16h0 x+ x− x− h0 x+ x+ x− +
{

136 t1 t
′
2 h0 x−

+320 t2 H
(1)
2 x− x−

− 13h0 x+ x− x− x− h0 x+ x+ + (x+ ↔ x−; 1 ↔ 2)
}]

(2.38d)

Ψ15 =
1

504

[

368 t21 t
2
2 − h0 x+ x− x− x− h0 x+ x+ x+ x− +

{

270 t2 H
(1)
3x− x−

+ 19 t1 t
′
2 h0 x+ x− x−

+ (x+ ↔ x−; 1 ↔ 2)
}]

. (2.38e)

The prime in t′1(x
−) and in t′2(x

+) indicates derivatives with respect to the only argument

of the functions.

To find a causal solution of eq. (2.37) one expands H(2) into a series in z2, matches

the coefficients of the powers of z2 and requires the series to terminate at some finite order

to find the coefficients. The answer then reads

H(2)(x+, x−, z) =H
(2)
0 (x+, x−) z4 +H

(2)
1 (x+, x−) z6 +H

(2)
2 (x+, x−) z8 +H

(2)
3 (x+, x−) z10

+H
(2)
4 (x+, x−) z12 +H

(2)
5 (x+, x−) z14 (2.39)

with

H
(2)
0 =

6

∂+ ∂−
H

(2)
1 (2.40a)

H
(2)
1 = − 1

∂+ ∂−
ψ7 −

16

(∂+ ∂−)2
Ψ9

− (16)(30)

(∂+ ∂−)3
Ψ11 −

(16)(30)(48)

(∂+ ∂−)4
Ψ13 −

(16)(30)(48)(70)

(∂+ ∂−)5
Ψ15 (2.40b)

H
(2)
2 = − 1

(∂+ ∂−)
Ψ9 −

30

(∂+ ∂−)2
Ψ11 −

(30)(48)

(∂+ ∂−)3
Ψ13 −

(30)(48)(70)

(∂+ ∂−)4
Ψ15 (2.40c)
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Figure 6. A diagram contributing to the metric of an asymmetric collision of two shock waves as

considered in section 3.

H
(2)
3 = − 1

(∂+ ∂−)
Ψ11 −

48

(∂+ ∂−)2
Ψ13 −

(48)(70)

(∂+∂−)3
Ψ15 (2.40d)

H
(2)
4 = − 1

(∂+ ∂−)
Ψ13 −

70

(∂+ ∂−)2
Ψ15 (2.40e)

H
(2)
5 = − 1

(∂+ ∂−)
Ψ15. (2.40f)

Using eqs. (2.39) with (2.40) in the remaining Einstein equations allows one to find

the other components of the metric at the same order: G(2), F (2), and F̃ (2). The essential

classes of diagrams resummed at NNLO are shown in figure 5. They involve either three

rescatterings in one nucleus and one rescattering in the other nucleus or two rescatterings

in each of the nuclei.

3 Asymmetric collisions of shock waves in AdS5

3.1 Derivation of the equations

We now want to find the solution of the proton-nucleus scattering problem at strong cou-

pling. In other words we want to resum all-order graviton exchanges with one shock wave

while keeping only terms with a single graviton exchange with the second nucleus. That

is, we want to resum all powers of, say, t2, while keeping only the leading power of t1. An

example of a typical diagram which is resummed this way is shown in figure 6.

To resum the diagrams of the type shown in figure 6 let us first construct the corre-

sponding Einstein equations describing this classical graviton field. We start by writing the

metric, which is just the same as given in eq. (2.7), but without capitalizing the unknown
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functions, to distinguish from the case of the full nucleus-nucleus collisions:

ds2 =
L2

z2

{

−
[

2 + g(x+, x−, z)
]

dx+ dx− +
[

t1(x
−) z4 + f(x+, x−, z)

]

dx− 2

+
[

t2(x
+) z4 + f̃(x+, x−, z)

]

dx+ 2 + [1 + h](x+, x−, z) dx2
⊥ + dz2

}

. (3.1)

We now want to plug the metric (3.1) into the Einstein equations (2.5) and linearize it in

t1. In doing so we have to remember that, as f , f̃ , g, and h should have only one factor of

t1 in them, one has f, f̃ , g, h ∼ t1. Thus one has to linearize Einstein equations in t1 and

in f , f̃ , g and h. The relevant equations are

(⊥⊥) −4 z3 t2 f − 8 z7 t1 t2 − z4 t2 fz + gz + 5hz − z hz z + z5 t2 hx− x−+

+2 z hx+ x− = 0 (3.2a)

(zz) 8 z3 t2 f + 32 z7 t1 t2 + 3 z4 t2 fz + gz + 2hz + z5 t2 fz z+

−z gz z − 2 z hz z = 0 (3.2b)

(−z) z7 t′1 t2 + z3 t2 fx− − 1

4
gx− z − hx− z −

1

2
fx+ z = 0, (3.2c)

where we suppressed the arguments of all functions and, as usual, the subscripts z, x+

and x− indicate partial derivatives with respect to these variables. Again, the prime in

t′1(x
−) (and in t′2(x

+) below) indicates a derivative with respect to the only argument

of the function. Other components of Einstein equations are not needed, as eqs. (3.2)

contain enough information to find f , g and h. In fact we will need to know only h: as

was shown in eqs. (2.12) we can reconstruct the whole energy-momentum tensor of the

produced matter from it.

Solving eq. (3.2a) for gz and using the result to eliminate g from eq. (3.2c) yields

1

4
hz −

1

2

∂+

∂−
fz −

1

4
z
[

hz z + z3 t2 (4 z3 t1 + fz − z hx− x−) − 2hx+ x−

]

= 0. (3.3)

Eliminating gz from eq. (3.2b) and solving the resulting equation for fz we get

fz =
1

4 z4 t2

[

−16 z7 t1 t2 − 3hz + 3 z hz z − z2 hz z z + 4 z5 t2 hx− x−

+z6 t2 hx− x− z + 2 z2 hx+ x− z

]

. (3.4)

Applying an operator ∂−/∂+ to eq. (3.3) and substituting fz from eq. (3.4) into it we obtain

the following equation for h

− 3hz + 3 z hz z − z2 hz z z + 2 z2 hx+ x− z = 16 z7 t1 t2

+ z4 t2
∂−
∂+

[

7

2
hz −

7

2
z hz z +

1

2
z2 hz z z − 2 z2 hx+ x− z −

1

2
z6 t2 hx− x− z

]

. (3.5)

Note that the first line of eq. (3.5) is identical to the LO equation (4.10) in [1]. Higher

order powers of t2 come in through the second line of eq. (3.5).
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Eq. (3.5) is the equation we need to solve. We slightly simplify it by writing it as

z2 ∂z

[

3

z
hz − hz z + 2hx+ x−

]

= 16 z7 t1 t2

+ z4 t2
∂−
∂+

{

z2 ∂z

[

−7

2

1

z
hz +

1

2
hz z − 2hx+ x−

]

− 1

2
z4 t2 ∂

2
− z

2 ∂zh

}

. (3.6)

Below we will use eq. (3.6) to evaluate the diagram in figure 6 in the eikonal approximation,

which we will define in the next Subsection.

3.2 Green function and the eikonal approximation

To construct the solution of eq. (3.6) we will need to construct the retarded Green function

of the operator on its left hand side. As inverting z2 ∂z is trivial, we will need the function

G(x+, x−, z;x′+, x′−, z′) such that

[

3

z
∂z − ∂2

z + 2∂+∂−

]

G(x+, x−, z;x′+, x′−, z′) = δ(x+ − x′+)δ(x− − x′−)δ(z − z′). (3.7)

This is a bulk-to-bulk scalar field propagator, which has previously been found

in [74]. For completeness of the presentation let us briefly outline the construction of

G(x+, x−, z;x′+, x′−, z′).

Fourier-transforming eq. (3.7) into light-cone momentum space (i.e., going from x+ and

x− coordinates to their conjugates k+, k− but keeping the coordinate z) and dropping the

delta-function on the right one can see that the solution of the resulting equation is simply

z2 J2(z
√

2 k+ k−). Using these Bessel function and going back to the x0, x3 coordinates

instead of x+, x− we write for the retarded Green function

G(x0, x3, z;x′0, x′3, z′) =
θ(x0 − x′0)

2π

∞
∫

0

dm

∞
∫

−∞

dk
sin
[

(x0 − x′0)
√
m2 + k2

]

√
m2 + k2

ei k (x3−x′3)

× mz2 J2(mz)
1

z′
J2(mz′). (3.8)

The integral over the momentum variable k can be performed yielding

G(x+, x−, z;x′+, x′−, z′) =
1

2
θ(x+ − x′+) θ(x− − x′−)

z2

z′

∞
∫

0

dm

× mJ0

(

m
√

2 (x+ − x′+) (x− − x′−)
)

J2(mz)J2(mz′). (3.9)

Eq. (3.9) can be further simplified by integration over m, which gives

G(x+, x−, z;x′+, x′−, z′)=
1

2π
θ(x+−x′+)θ(x−−x′−)θ(s)θ(2−s) z

z′2
1+2s(s−2)
√

s(2 − s)
(3.10)

with

s ≡ 2 (x+ − x′+) (x− − x′−) − (z − z′)2

2 z z′
. (3.11)
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x0x x− +

x3

nucleusproton

Figure 7. The space-time structure of the graviton emission in a proton-nucleus collision. The

graviton is denoted by the wavy line. After being produced the graviton rescatters in the nucleus

and the propagates freely in the forward light-cone.

However eq. (3.9) is really all we need for the calculations to follow.

Eqs. (3.9) or (3.10) give us the propagator of the gravitons in the s-channel of fig-

ure 6. These expressions allow us to construct the eikonal approximation for the graviton

production in asymmetric shock wave collisions. The space-time structure of graviton pro-

duction in such collisions in shown in figure 7. It illustrates the diagram in figure 6: first

the graviton (the wavy line) is produced in a collision of the proton shock wave and some

elements of the nucleus shock wave (a nucleon in the nucleus). This generates the LO

factor of t1 t2. Subsequently the graviton rescatters in the nucleus shock wave with each

rescattering bringing in a factor of t2. After the graviton leaves the shock wave it simply

propagates freely. Indeed the transverse dimensions x1, x2 and the 5th dimension in AdS5

are implied but not shown in figure 7.

Most importantly, the propagation of the graviton between two successive rescat-

terings in the nucleus shock wave happens over a very short interval in the light-cone

“plus” direction. Namely the intervals ∆x+
i ’s between the rescatterings in figure 6 are

Lorentz-contracted and are all of the order ∆x+
i ∼ 1/p−2 . As p−2 (along with the com-

parable scale p+
1 ) is the largest momentum scale in the problem we conclude that ∆x+

i ’s

are the shortest distance scales in the problem, i.e., they are very small compared to any

other distance scale. This is illustrated in figure 7, which depicts the propagation of the

graviton through the highly Lorentz-contracted nucleus. Therefore we can approximate

the full s-channel graviton propagator by its short-x+-interval version. We will call such

approximation an eikonal approximation in analogy with the terminology used in high

energy scattering in four dimensions.

Putting x+ ≈ x′+ in eq. (3.9) we can put J0(0) = 1 which yields the Green function in
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the eikonal approximation

Geik(x
+, x−, z;x′+ ≈ x+, x′−, z′) =

1

2
θ(x+ − x′+)θ(x− − x′−)

z2

z′

∞
∫

0

dmmJ2(mz)J2(mz
′)

=
1

2
θ(x+ − x′+)θ(x− − x′−)δ(z − z′). (3.12)

For inhomogeneous equations like (3.6), or like the following equation

3

z
hz − hz z + 2hx+ x− = R(x+, x−, z), (3.13)

in the solution, the Green function acts on some function R(x+, x−, z) on the right hand

side, such that

h(x+, x−, z) =

∞
∫

−∞

dx′+
∞
∫

−∞

dx′−
∞
∫

0

dz′G(x+, x−, z;x′+, x′−, z′)R(x′+, x′−, z′). (3.14)

Using the eikonal Green function (3.12) in eq. (3.14) yields

heik(x
+, x−, z) =

1

2 ∂+ ∂−
R(x+, x−, z) (3.15)

with the inverse derivatives defined in eq. (2.13).

Going from eq. (3.13) to eq. (3.15) clarifies the procedure for the eikonal approxima-

tion: simply neglecting all z-derivatives on the left hand side of eq. (3.13) compared to ∂+

we obtain eq. (3.15). Indeed ∂+ ∼ 1/∆x+ ∼ p−2 if the propagator in question spans a short

interval ∆x+. Hence the main rule of the eikonal approximation is that ∂+ is much larger

than any other derivative in the problem. The short interval scalar field bulk-to-bulk

propagator is

∞
∫

−∞

dx′+
∞
∫

−∞

dx′−
∞
∫

0

dz′Geik(x
+, x−, z;x′+, x′−, z′) [. . .] =

1

2 ∂+ ∂−
[. . .] . (3.16)

One has to keep in mind that the eikonal approximation should be applied to short-

lived propagators only. That is we can not just take eq. (3.6) and drop all terms not

containing ∂+. As can be seen from figures 6 and 7, the graviton propagator after the

interaction with the nucleus is not limited to any short interval in any direction. That is,

we have to use the full propagator (3.9) for that line. Note that we are not calculating

the graviton production amplitude: we are calculating the graviton field. Hence in the

diagram in figure 6 the outgoing graviton propagator is off-mass shell, and is not on mass

shell, as it would have been for the production amplitude. (See e.g. [36] for an example of

constructing Feynman diagrams corresponding to classical fields.)

The graviton propagator in eq. (3.16) does not take into account rescatterings and

only describes free propagation for a graviton over a short time interval. The eikonal

approximation should also be applied to the multi-graviton vertices in figure 6. To facilitate
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the application of the eikonal approximation let us recast eq. (3.6) in a slightly different

form. Defining

h̃ = z2 ∂z h (3.17)

we rewrite eq. (3.6) as

[

D̂1 + 2 ∂+ ∂−

]

h̃ = 16 z7 t1 t2 + z4 t2
∂−
∂+

{

[

D̂2 − 2 ∂+ ∂−

]

h̃− 1

2
z4 t2 ∂

2
− h̃

}

(3.18)

where we have defined differential operators

D̂1 = z2 ∂z

[

5

z3
− 1

z2
∂z

]

(3.19)

and

D̂2 = z2 ∂z

[

−9

2

1

z3
+

1

2

1

z2
∂z

]

. (3.20)

Defining the truncated amplitude

h̄ =
[

D̂1 + 2 ∂+ ∂−

]

h̃ (3.21)

allows us to write eq. (3.18) as

h̄=16z7t1t2+z4t2
∂−
∂+

[

(

D̂2−2∂+∂−

)(

D̂1+2∂+∂−

)−1
− 1

2
z4t2∂

2
−

(

D̂1+2∂+∂−

)−1
]

h̄. (3.22)

The solution of eq. (3.22) is

h̄ =



1 + z4t2
∂−
∂+

(

1 − D̂2

2∂+∂−

)(

1 +
D̂1

2∂+∂−

)−1

+
1

4

(

z4t2
∂−
∂+

)2
(

1 +
D̂1

2∂+∂−

)−1




−1

× 16z7t1t2. (3.23)

As t2 and 1/∂+ do not commute, here and throughout the paper we have

(

t2
1

∂+

)2

. . . = t2
1

∂+

(

t2
1

∂+
. . .

)

, (3.24)

that is, each 1/∂+ operator acts on everything to its right.

A simple algebra gives

h =

[

3

z
∂z − ∂2

z + 2 ∂+ ∂−

]−1 1

∂z

(

h̄

z2

)

(3.25)

with

1

∂z
[. . .](z) =

z
∫

0

dz′ [. . .](z′) . (3.26)

– 20 –



J
H
E
P
0
5
(
2
0
0
9
)
0
6
0

Therefore h and h̄ are related to each other with the help of the Green function (3.9).

Therefore h̄ is really the part of the amplitude in figure 6 without the last s-channel gluon

propagator, i.e., h̄ is the truncated amplitude. As all s-channel graviton propagators in

the truncated amplitude h̄ are short-lived, we can apply the eikonal approximation to the

equation (3.23) for h̄. In fact eq. (3.23) is already cast in the form designed to simplify

the expansion in inverse powers of ∂+. The eikonal h̄ we obtain this way can be used in

eq. (3.25) with the full Green function (3.9) to recover h(x+, x−, z). As eq. (3.23) appears

to be prohibitively complicated to evaluate analytically, the eikonal approximation appears

to be the only way to proceed. In fact, as we will shortly see, for the delta-function shock

waves it yields the exact solution for the metric generated in the asymmetric (proton-

nucleus) collision of two shock waves.

3.3 Delta-function shock waves

3.3.1 Energy-momentum tensor of the produced medium

Let us again consider a collision of two physical delta-function shock waves with t1 and t2
given by eq. (2.26). We will also keep the smeared shock waves in eq. (2.27) in mind.

First let us apply the eikonal approximation to eq. (3.23) without substituting the

explicit expressions for t1 and t2 from eq. (2.26). As we argued above, in the eikonal

approximation the derivative ∂+ is the largest momentum scale in the problem. Hence in

eq. (3.23) we have

D̂1

2 ∂+ ∂−
≪ 1,

D̂2

2 ∂+ ∂−
≪ 1. (3.27)

After neglecting those terms eq. (3.23) yields

h̄eik =

[

(

1 +
1

2
z4 t2

∂−
∂+

)2
]−1

16 z7 t1 t2. (3.28)

To evaluate eq. (3.28) we expand it in a series

h̄eik =

∞
∑

n=0

(n+ 1)

(

−1

2
z4 t2

∂−
∂+

)n

16 z7 t1 t2. (3.29)

Using eq. (3.29) in eq. (3.25) along with eq. (3.9) we write

heik =

∞
∫

−∞

dx′+
∞
∫

−∞

dx′−
∞
∫

0

dz′G(x+, x−, z;x′+, x′−, z′)
1

∂z′

(

h̄eik

z′2

)

=

x+
∫

−∞

dx′+
x−

∫

−∞

dx′−
∞
∫

0

dz′
1

2

z2

z′

∞
∫

0

dmmJ0

(

m
√

2(x+ − x′+)(x− − x′−)
)

J2(mz)J2(mz
′)

×
∞
∑

n=0

n+ 1

2n + 3

(

−1

2
t2(x

′+)
∂′−
∂′+

)n

8(z′)4n+6t1(x
′−)t2(x

′+). (3.30)
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Here ∂′± = ∂/∂x′±. The expression (3.30) is still rather difficult to evaluate. However, as

we are primarily interested in the dynamics of the gauge theory, we only need the z4 term in

this expression to obtain the transverse pressure of the produced medium using eqs. (2.12)

and (2.24). As the series expansion of the Bessel functions converges everywhere, we expand

J2(mz) =
1

8
m2 z2 + o(z4) (3.31)

in eq. (3.30) and integrate over z′ and m obtaining the transverse pressure

p =
N2

c

2π2
8

∞
∑

n=0

(n+ 1)2(−2)n
x+
∫

−∞

dx′+
x−

∫

−∞

dx′−(x+ − x′+)1+2n(x− − x′−)1+2n

×
[

∂′n− t1(x
′−)
]

(

t2(x
′+)

1

∂′+

)n

t2(x
′+). (3.32)

Using integration by parts in the integral over x′− in eq. (3.32) and remembering that t1
is a localized function of x− yields the final expression for the transverse pressure

p =
N2

c

2π2
8

∞
∑

n=0

(−2)n(n + 1)
(2n + 1)!

n!

x−

∫

−∞

dx′−(x− − x′−)1+nt1(x
′−)

×
x+
∫

−∞

dx′+(x+ − x′+)1+2n

(

t2(x
′+)

1

∂′+

)n

t2(x
′+). (3.33)

Eq. (3.33) is one of the main results of this section. It is the simplest expression for p we

could find without using an explicit form for the functions t1 and t2.

As with the NLO calculations of section 2.2.2, substituting t1 and t2 from eq. (2.26)

into eq. (3.33) would generate terms like δ(x+) θ(x+), evaluation of which is ambiguous.

To avoid this ambiguity we use the smeared t1 and t2 from eq. (2.27). For x− ≫ a1 and

x+ ≫ a2 we have

x−

∫

−∞

dx′− (x− − x′−)1+n t1(x
′−) ≈ µ1 (x−)1+n θ(x−) (3.34)

and

x+
∫

−∞

dx′+ (x+ − x′+)1+2n

(

t2(x
′+)

1

∂′+

)n

t2(x
′+) ≈ 1

(n+ 1)!
µn+1

2 (x+)1+2 n θ(x+). (3.35)

Using eqs. (3.34) and (3.35) in eq. (3.33) and summing the series over n yields

p =
N2

c

2π2

8µ1 µ2 x
+ x− θ(x+) θ(x−)

[1 + 8µ2 (x+)2 x−]3/2
. (3.36)
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This is another main result of this section: eq. (3.36) gives us the transverse pressure of the

medium produced in the collision of a proton and a nucleus at strong coupling. It is valid

at x− ≫ a1 and x+ ≫ a2: these conditions are automatically satisfied if the sources are

exact delta-functions of eq. (2.26). Hence for the delta-function sources (2.26) eq. (3.36)

provides us with the exact solution of the problem! As a cross-check one can see that

expanding eq. (3.36) in a series in µ2 to NLO yields eq. (2.30).

Eq. (3.36) allows us to explicitly specify the limits of our approximation. Namely,

we resum all powers of rescattering in the nucleus, which, for delta-function shock waves

translate into powers of µ2 (x+)2 x−. At the same time we neglect higher rescatterings in the

proton, which, by analogy, would bring in powers of µ1 (x−)2 x+. Hence the applicability

region of eq. (3.36) is defined by

µ1 (x−)2 x+ ≪ 1, µ2 (x+)2 x− ∼ 1. (3.37)

(Indeed for small µ2 (x+)2 x− eq. (3.36) applies too.) For non-delta function shock waves

like those given in eq. (2.27) one also has to keep the limit (2.32) in mind while studying

the applicability region of eq. (3.36).

Using eq. (3.36) along with eq. (2.12) we can find all other non-zero components of the

energy-momentum tensor of the produced medium:

〈T++〉 = − N2
c

2π2

4µ1µ2(x
+)2θ(x+)θ(x−)

[1 + 8µ2(x+)2x−]3/2
, (3.38a)

〈T−−〉 =
N2

c

2π2
θ(x+)θ(x−)

µ1

2µ2(x+)4
(3.38b)

×
3−3

√

1+8µ2(x+)2x−+4µ2(x
+)2x−

(

9+16µ2(x
+)2x−−6

√

1+8µ2(x+)2x−
)

[1 + 8µ2(x+)2x−]3/2
,

〈T+−〉 =
N2

c

2π2

8µ1µ2x
+x−θ(x+)θ(x−)

[1 + 8µ2(x+)2x−]3/2
, (3.38c)

〈T ij〉 =δij N
2
c

2π2

8µ1µ2x
+x−θ(x+)θ(x−)

[1 + 8µ2(x+)2x−]3/2
. (3.38d)

Provided the complexity of the problem at hand, the resulting formulas (3.38) for the

energy-momentum tensor are remarkably simple!

Now we can ask a question: what kind of medium is produced in these strongly coupled

proton-nucleus collisions? Is it described by ideal hydrodynamics, just like Bjorken hydro-

dynamics was obtained in [51]? In our case the produced matter distribution is obviously

rapidity-dependent, so it is slightly more tricky to check whether eqs. (3.38) constitute an

ideal hydrodynamics, i.e., whether it can be written as

T µν = (ǫ+ p)uµ uν − p ηµν (3.39)

with the positive energy density ǫ and pressure p. ηµν is the metric of the four-dimensional

Minkowski space-time and uµ is the fluid 4-velocity.
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For the particular case at hand it is easy to see that the energy-momentum tensor in

eq. (3.38) can not be cast in the ideal hydrodynamics form of (3.39). In the case of ideal

hydrodynamics one has

T++ = (ǫ+ p) (u+)2 > 0. (3.40)

At the same time 〈T++〉 in eq. (3.38a) is negative definite. Therefore the ideal hydrody-

namic description is not achieved in the proton-nucleus collisions. We believe this result

is due to limitations of this proton-nucleus approximation. Any strongly coupled medium

at asymptotically late times is almost certainly bound to thermalize. Our conclusion is

then that thermalization/isotropization of the medium does not happen in the space-time

region defined by the bounds in eq. (3.37). What we found in eq. (3.38) is a medium at

some intermediate stage, presumably on its way to thermalization at a later time. It is

likely that one needs to solve the full nucleus-nucleus scattering problem to all orders, as

shown in figure 2, to obtain a medium described by ideal hydrodynamics.

3.3.2 Proton stopping

In [1] it was argued that the physical shock waves given by eq. (2.26) or by eq. (2.27)

come to a complete stop shortly after the collision. The conclusion was based on the

LO calculation, which for the shock waves (2.27) gave the following ++ component of

the energy momentum tensor of a nucleus (or its remnants) moving in the light-cone plus

direction after the collision

〈T++(x+ ≫ a, x− = a/2)〉 =
N2

c

2π2

µ

a

[

1 − 2µx+ 2 a
]

. (3.41)

In arriving at eq. (3.41) in [1] we for simplicity put µ1 = µ2 = µ and a1 = a2 = a. Eq. (3.41)

allowed us to conclude that as the light-cone time x+ ∼ 1/
√
µa the ++ component of the

energy momentum tensor of the shock wave would become zero, meaning that the shock

wave stops propagating along the light cone. Indeed, as we saw above (see eq. (3.37)),

at the same time as the stopping happens, i.e., when µx+ 2 a ∼ 1, higher order graviton

exchanges would become important. With the help of eq. (3.33) we can now explore

whether multiple graviton exchanges with the nucleus shock wave modify our conclusion

about proton stopping reached in [1] at the LO level.

We start by evaluating eq. (3.33) for x+ ≫ a2, but with 0 < x− < a1. That way we

follow the proton shock wave for some time after the collision, which allows us to find the

energy-momentum tensor of the shock wave itself. As x+ ≫ a2 still, eq. (3.35) remains

unchanged. We have to re-evaluate the left-hand-side of eq. (3.34) for 0 < x− < a1. This

can be readily done yielding

x−

∫

−∞

dx′− (x− − x′−)1+n t1(x
′−) =

µ1

a1

1

n+ 2
(x−)2+n, for 0 < x− < a1. (3.42)

Using eqs. (3.35) and (3.42) in eq. (3.33) and resumming the series one obtains the

transverse pressure inside the proton shock wave, which, with the help of eq. (2.12), gives
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the following expression for the ++ component of the energy momentum tensor of the

produced matter

〈T++
prod〉 =

N2
c

2π2

µ1

a1

{

−1 +
1

√

1 + 8µ2 (x+)2 x−

}

, for 0 < x− < a1. (3.43)

Eqs. (2.3) and (2.27) give the energy-momentum tensor of the original incoming shock

wave itself as

〈T++
orig〉 =

N2
c

2π2

µ1

a1
, for 0 < x− < a1. (3.44)

Adding the energy-momentum tensors of the original shock wave and the produced

matter given in eqs. (3.44) and (3.43) together we obtain the total ++ component of the

energy-momentum tensor of the proton shock wave

〈T++
tot 〉 = 〈T++

orig〉 + 〈T++
prod〉 =

N2
c

2π2

µ1

a1

1
√

1 + 8µ2 (x+)2 x−
, for 0 < x− < a1. (3.45)

Expanding eq. (3.45) in the powers of µ2 at x− = a1/2 would yield eq. (3.41), providing

an independent consistency check.

Eq. (3.45) clearly demonstrates that the ++ component of the energy-momentum

tensor of the proton shock wave is positive definite. Notice that the LO solution (3.41)

for T++ becomes negative at large enough x+. Inclusion of multiple graviton exchanges

fixes this problem. T++ in eq. (3.45) goes to zero smoothly as x+ grows large for any

fixed x− in the 0 < x− < a1 range. Thus eq. (3.45) explicitly demonstrates that strong-

coupling interactions of the proton shock wave with the nucleus shock wave would stop

the proton shock wave shortly after the collision. For x− = a1/2 the stopping happens at

x+ ∼ 1/
√
µ2 a1, in agreement with the arguments of [1].

3.4 Delta-prime shock waves

3.4.1 Deltology

The eikonal approximation used in section 3.3 reduces the exact formula (3.23) to eq. (3.28).

Eq. (3.28) resums the powers of t2 with only one factor of 1/∂+ inserted between each pair

of t2’s. It thus resums terms consisting of sequences like

t2
1

∂+
t2

1

∂+
t2

1

∂+
. . .

1

∂+
t2 (3.46)

(see also eq. (3.33)). This is indeed natural in the eikonal approximation, as ∂+ ∼ p−2
is large and we want to have as little powers of 1/∂+ ∼ 1/p−2 as possible in each term.

Eq. (3.28) resums the absolute minimum number of the powers of 1/∂+.

An attentive reader might have noticed that the approximation of eq. (3.28) is insuf-

ficient for the delta-prime shock waves of eq. (2.33). Indeed performing the calculation

in appendix A we saw that leading powers of p−2 arose not only from the terms of the

type shown in eq. (3.46), like we had in eq. (A.10), but also from terms with two powers
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of 1/∂+ inserted between two t2’s, as can be seen from eqs. (A.6) and (A.9). Hence we

need to rethink our power counting if we want to resum the leading eikonal terms for the

delta-prime shock waves.

Let us start with delta-function shock waves with t2 ∼ δ(x+). In this case

t2
1

∂+
t2 ∼ δ(x+) θ(x+) ∼ δ(x+). (3.47)

Here we are being rather sloppy in treating δ(x+) θ(x+): of course the whole regularization

introduced in eq. (2.27) above was designed to obtain the correct values for θ(0) in different

situations. However, for the purposes of counting powers of p−2 the exact value of θ(0) is

not important as long as it is a p−2 -independent number. Eq. (3.47) demonstrates that for

t2 ∼ δ(x+) one has

t2
1

∂+
t2

1

∂+
t2

1

∂+
. . .

1

∂+
t2 ∼ δ(x+). (3.48)

Therefore t2 (1/∂+) ∼ o(1) in p−2 power counting.

Higher order corrections may come in through an insertion of one power of 1/∂2
+

between two t2’s. One then gets

t2
1

∂2
+

t2 ∼ δ(x+)x+ θ(x+) = 0. (3.49)

The equality in eq. (3.49) is only true for delta-function shock waves and demonstrates

that eq. (3.38) is the exact solution for the problem of the collision of two delta-function

shock waves. For the smeared shock waves of eq. (2.27) the zero in eq. (3.49) would be

replaces by a2 δ(x
+). As a2 ∼ 1/p−2 this indicates suppression by a power of 1/p−2 compared

to the leading-order terms in eq. (3.48). One can similarly show that insertions of higher

powers of 1/∂+ would bring in further suppression. Thus our approximation in section 3.3

is justified by this explicit power counting.

Let us now turn our attention to delta-prime shock waves of eq. (2.33). Notice that t1
and t2 in eq. (2.33) do not explicitly depend on p+

1 and p−2 : as we show in appendix A the

dependence on these momenta (and, hence, on the center-of-mass energy of the collision)

comes in through singularities like δ(x± = 0). For t2(x
+) ∼ δ′(x+) one has

t2
1

∂+
t2 ∼ δ′(x+) δ(x+) ∼

(

δ2(x+)

2

)′

∼ p−2 δ
′(x+). (3.50)

Again we are not keeping track of factors not containing p−2 . Iterating the procedure we get

(

t2
1

∂+

)n

t2 ∼ (p−2 )n δ′(x+), (3.51)

that is, for delta-prime shock waves t2 (1/∂+) ∼ p−2 .

To understand higher order terms with more powers of 1/∂+ consider

t2
1

∂2
+

t2 ∼ δ′(x+)θ(x+) ∼
(

δ(x+)θ(x+)
)′ − δ2(x+) ∼

(

δ(x+)θ(x+)
)′ − p−2 δ(x

+). (3.52)
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The term which was subleading for the delta-function shock waves (see eq. (3.49)) gives

a leading-order factor of p−2 for delta-prime shock waves, as we see from the last term in

eq. (3.52). Applying higher powers of t2 (1/∂+) to the last term in eq. (3.52) does not make

the term less important:
(

t2
1

∂+

)n

p−2 δ(x
+) ∼ (p−2 )n+1 δ(x+). (3.53)

(In fact the (δ(x+) θ(x+))
′
term in eq. (3.52) also brings in powers of p−2 after the operator

t2 (1/∂+) acts on it at least once.) We thus see that one insertion of t2(1/∂
2
+) still gives

leading terms in the case of delta-prime shock waves. Fortunately higher order insertions

of t2(1/∂
2
+) start generating subleading terms and can be discarded. We illustrate this by

acting with t2(1/∂
2
+) on the last term in eq. (3.52):

t2
1

∂2
+

p−2 δ(x
+) ∼ p−2 δ

′(x+)x+ θ(x+) ∼ −p−2 δ(x+) θ(x+). (3.54)

No extra powers of p−2 is generated and hence such terms are subleading.

Insertions of a higher number of inverse derivatives are also subleading. For instance

t2
1

∂3
+

t2 ∼ δ′(x+) x+ θ(x+) ∼ −δ(x+) θ(x+), (3.55)

again producing no powers of p−2 .

We conclude that for delta-prime shock waves the eikonal approximation consists

of the term in eq. (3.28) along with all terms with a single insertion of t2(1/∂
2
+) in all

possible positions.

3.4.2 Energy-momentum tensor of the produced medium

To take into account all leading terms for the delta-prime shock waves we write

h̄ = h̄eik + δh̄ (3.56)

with h̄eik given by eq. (3.28) and δh̄ denoting the sum of all terms with all-orders of t2(1/∂+)

and exactly one insertion of t2(1/∂
2
+) as contained in eq. (3.23).

Expanding eq. (3.23) to the first order in t2(1/∂
2
+) we write

δh̄ =

[

(

1 +
1

2
z4t2

∂−
∂+

)2
]−1

[

1

2
z4t2

1

∂2
+

(

D̂1 + D̂2

)

+
1

8
z4t2

∂−
∂+
z4t2

1

∂2
+

D̂1

]

h̄eik. (3.57)

Expanding the first factor on the right hand side of eq. (3.57) into a series and using the

series representation for h̄eik from eq. (3.29) yields

δh̄ =
∞
∑

m=0

(m+ 1)

(

−1

2
z4t2

∂−
∂+

)m [1

2
z4t2

1

∂2
+

(

D̂1 + D̂2

)

+
1

8
z4t2

∂−
∂+
z4t2

1

∂2
+

D̂1

]

×
∞
∑

n=0

(n+ 1)

(

−1

2
z4t2

∂−
∂+

)n

16z7t1t2. (3.58)
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Using the definitions of D̂1 and D̂2 from eqs. (3.19) and (3.20) we obtain

D̂1 z
4 n+7 = −8 (n+ 1) (2n + 1) z4 n+5 (3.59)

and
(

D̂1 + D̂2

)

z4 n+7 = −4 (n + 1) (2n + 3) z4 n+5, (3.60)

which allow us to rewrite eq. (3.58) as

δh̄ =16

∞
∑

n,m=0

(n+ 1)2 (m+ 1)

(

−1

2

)n+m (

t2
1

∂+

)m [

−2 (2n + 3) z4 (n+m)+9 t2
1

∂2
+

−(2n + 1) z4 (n+m)+13 ∂− t2
1

∂+
t2

1

∂2
+

]

[

∂n+m
− t1

]

(

t2
1

∂+

)n

t2. (3.61)

The truncated amplitude contribution (3.61) leads to the contribution to the amplitude

through eq. (3.25). Using the Green function (3.9) we write

δh =2z2

x+
∫

−∞

dx′+
x−

∫

−∞

dx′−
∞
∫

0

dz′
∞
∫

0

dqqJ0

(

q
√

2(x+ − x′+)(x− − x′−)
)

J2(qz)J2(qz
′)

×
∞
∑

n,m=0

(n+ 1)2(m+ 1)

(

−1

2

)n+m(

t2(x
′+)

1

∂′+

)m

×
[

−2(2n+3)

n+m+2
(z′)4(n+m)+7t2(x

′+)
1

∂′2+
− 2n+ 1

n+m+3
(z′)4(n+m)+11∂′−t2(x

′+)
1

∂′+
t2(x

′+)
1

∂′2+

]

×
[

∂′n+m
− t1(x

′−)
]

(

t2(x
′+)

1

∂′+

)n

t2(x
′+). (3.62)

As in section 3.3 we are interested in the contribution of the metric element, now the

term δh, to the transverse pressure. As further evaluation of eq. (3.62) to all orders in z

appears to be rather involved, we expand it to the order z4 using eq. (3.31), integrate over

z′ and q, and eliminate the ∂′− derivatives by successive integrations by parts. This yields

the following contribution to the transverse pressure

δp = − N2
c

2π2
8

x+
∫

−∞

dx′+
x−

∫

−∞

dx′−
∞
∑

n,m=0

(n+ 1)2 (m+ 1) (−2)n+m (x− − x′−)n+m+2 t1(x
′−)

× (x+ − x′+)2 (n+m)+2

[

2 (2n + 3)
(2 (n+m) + 3)!

(n+m+ 2)!

+ 4 (2n + 1)
(2 (n +m) + 5)!

(n+m+ 3)!
(x+ − x′+)2 (x− − x′−) t2(x

′+)
1

∂′+

]

×
(

t2(x
′+)

1

∂′+

)m

t2(x
′+)

1

∂′2+

(

t2(x
′+)

1

∂′+

)n

t2(x
′+). (3.63)

For further evaluation of eq. (3.63) we will explicitly substitute the shock wave profiles

from eq. (2.33). As one can see from the calculations in appendix A the regularization in

eq. (2.34) is not needed for the leading-p−2 terms.
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First let us find the contribution to the transverse pressure coming from the piece in

eq. (3.33), which we will refer to as peik. As can be easily shown for t2 from eq. (2.33) (see

appendix B)

(

t2(x
+)

1

∂+

)n

t2(x
+) =

(Λ2
2)

n+1

(n+ 1)!

(

δn+1(x+)
)′
. (3.64)

In eq. (3.64) and henceforth for simplicity we absorb factors of A
1/3
1 and A

1/3
2 into Λ2

1 and

Λ2
2. Using eqs. (2.33) and (3.64) in eq. (3.33) yields

peik =
N2

c

2π2
8Λ2

1 Λ2
2 θ(x

+) θ(x−)
1 − 44 p−2 Λ2

2 (x+)2 x− + 64
(

p−2 Λ2
2 (x+)2 x−

)2

[

1 + 8 p−2 Λ2
2 (x+)2 x−

]7/2
. (3.65)

To evaluate eq. (3.63) one needs another relation (see appendix B for its derivation),

valid only for t2 from eq. (2.33) at the leading order in p−2
(

t2(x
+)

1

∂+

)m

t2(x
+)

1

∂2
+

(

t2(x
+)

1

∂+

)n

t2(x
+) =

(−1)m+1(Λ2
2)

n+m+2(p−2 )n+m+1

(n+ 1)!(m+ 1)!
δ(x+).

(3.66)

Using eqs. (2.33) and (3.64) in eq. (3.63) we get

δp =
N2

c

2π2
8Λ2

1Λ
2
2θ(x

+)θ(x−)

×
{

1 − 36p−2 Λ2
2(x

+)2x− − 1 − 44p−2 Λ2
2(x

+)2x− + 64
(

p−2 Λ2
2(x

+)2x−
)2

[

1 + 8p−2 Λ2
2(x

+)2x−
]7/2

}

. (3.67)

The net transverse pressure is obtained by adding eqs. (3.65) and (3.67)

p = peik + δp =
N2

c

2π2
8Λ2

1 Λ2
2 θ(x

+) θ(x−)
[

1 − 36 p−2 Λ2
2 (x+)2 x−

]

. (3.68)

This is the first main result of this section. Importantly all higher order terms cancel

leaving us with the simple expression (3.68)! Note that eq. (3.68) is just a sum of the

LO and NLO corrections (resumming leading powers of p−2 ), and thus it agrees with

eq. (2.35). Namely it turns out that the NLO transverse pressure from eq. (2.35) taken at

the leading-p−2 accuracy gives us the full eikonal result for the proton-nucleus scattering

problem with delta-prime shock waves.

Eq. (3.68) indeed has a limited region of applicability. As it was derived for the proton-

nucleus approximation, similar to eq. (3.37) we must have

p+
1 Λ2

1 (x−)2 x+ ≪ 1, p−2 Λ2
2 (x+)2 x− ∼ 1, (3.69)

to be able to neglect eikonal graviton exchanges with the proton shock wave. We also want

to neglect the non-eikonal terms shown in eq. (2.35), which requires (see eq. (2.32))

Λ2
1 τ

2 ≪ 1, Λ2
2 τ

2 ≪ 1. (3.70)
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It appears that the region of applicability of eq. (3.68) is indeed somewhat limited

and is confined to the region of large x+ and small x−, i.e., the region of space-time in the

forward light cone bordering the proton shock wave. Still it is perhaps surprising to see that

the pressure in eq. (3.68) can easily become negative at large enough x+. As the pressure

is negative we conclude that the system has not yet reached the ideal hydrodynamics state,

similar to what happened to the delta-function shock waves in section 3.3.

The presence of negative pressure does not pose any problems by itself: negative pres-

sure is known to arise in the early stages of heavy ion collisions when they are described in

the Color Glass Condensate framework [24, 25]. Even in the strongly-coupled theory con-

sidered here, the LO part of the transverse pressure (2.35), when used in eq. (2.12), leads

to negative pressure in the longitudinal direction [1]. In comparison, appearance of a nega-

tive energy density would be indeed worrisome and would indicate an unphysical situation.

However, we can not calculate the energy density here, as the matter distribution is indeed

rapidity-dependent and is not described by the ideal hydrodynamics: it is impossible to

find the local rest frame of such medium to meaningfully talk about the energy density.

Therefore negative pressure in eq. (3.68) may be physical. One could interpret it as

follows: when we chose the delta-prime shock waves of eq. (2.33) we “forced” the shock

waves not to stop and to continue along the light cone trajectories. At the same time

the produced strongly-interacting medium is still trying to pull them back together. As

the shock waves are “artificially” pinned down to their light cones they do not stop, thus

creating a negative pressure in the medium which tries to slow them down.

Using eqs. (3.68), (2.24) and (2.12) we construct all non-zero components of the energy-

momentum tensor of the produced medium:

〈T++〉 =
N2

c

2π2

[

−8Λ2
1 Λ2

2 δ(x
−)x+ θ(x+) + 96 p−2 Λ2

1 Λ4
2 (x+)3 θ(x+) θ(x−)

]

, (3.71a)

〈T−−〉 =
N2

c

2π2

[

−8Λ2
1 Λ2

2 δ(x
+)x− θ(x−) + 288 p−2 Λ2

1 Λ4
2 x

+ θ(x+) (x−)2 θ(x−)
]

, (3.71b)

〈T+−〉 =
N2

c

2π2
8Λ2

1 Λ2
2 θ(x

+) θ(x−)
[

1 − 36 p−2 Λ2
2 (x+)2 x−

]

, (3.71c)

〈T ij〉 = δij N
2
c

2π2
8Λ2

1 Λ2
2 θ(x

+) θ(x−)
[

1 − 36 p−2 Λ2
2 (x+)2 x−

]

. (3.71d)

This is the second main result of this section.

3.5 Validity Range of the Perturbative Expansion

Before proceeding to the conclusions, let us check the validity range of the perturbative

approach for solving Einstein equations followed throughout the paper and outlined in

eq. (2.14). For the sake of simplicity, we will explicitly analyze the relative contribution to

the ⊥⊥ metric coefficient obtained at LO (H(0)), and NLO (H(1)), for the case of (physical)

delta function shock waves of eq. (2.26). Starting from eq. (2.15) for the LO results and

eqs. (2.22)–(2.23) for the NLO one and dropping some trivial factors of order one, the ratio

RNLO/LO between the NLO and LO contribution to the metric coefficient H(x+, x−, z) is
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1

3

√

µ1 e−η

1

3
√

µ2 eη

τ

z

z ∼

(

τ

µ2 eη

)1/4

z ∼

(

τ

µ1 e−η

)1/4

0

z ∼ τ

Figure 8. Schematic plot of the validity range of our solution in the z-τ plane. The z-axis was

moved to a slight left of τ = 0 line for illustrative purposes only: indeed τ ≥ 0. The darker shaded

area indicated the validity region of the perturbative expansion of section 2. The lighter shaded

area (together with the darker one) depicts the broader validity region of the pA approximation

developed in this section.

given by

RNLO/LO ≡ H(1)(x+, x−, z)

H(0)(x+, x−, z)
∼ µ2 τ

3 eη
1 + (z/τ)2 + (z/τ)4 + (z/τ)6

1 + (z/τ)2
. (3.72)

For definitiveness we have chosen to concentrate on the higher order corrections due to

graviton exchanges with the shock wave described by the energy scale µ2. To obtain

an estimate for the NLO graviton exchanges in the other shock wave one simply has to

replace µ2 → µ1 and η → −η in eq. (3.72). In arriving at eq. (3.72) we have made use of

the relation x+ = τ eη/
√

2, with η = (1/2) ln(x+/x−) the space-time rapidity. Note that

all the coefficients in the numerator and denominator in the ratio in eq. (3.72) are put to

be equal to 1 for simplicity of the parametric estimate we are performing.

Similar to eq. (3.72), one can build the ratio of the NNLO contribution, H(2) given by

eqs. (2.38)–(2.39), to the NLO one H(1), again for the delta-function shock waves:

RNNLO/NLO≡H(2)(x+, x−, z)

H(1)(x+, x−, z)
∼µ2τ

3eη
1+(z/τ)2+(z/τ)4+(z/τ)6

1 + (z/τ)2
∼ RNLO/LO. (3.73)

One can easily show that eqs. (3.72) and (3.73) are also valid for delta-prime shock

waves of eq. (2.33). Thus, the condition RNLO/LO . 1 sets the validity range of the whole

perturbative expansion. Two different situations can be considered: (i) z ≪ τ : in this case
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the perturbative expansion is justified as long as τ . [1/(µ2 e
η)]1/3. (ii) z ≫ τ : in this

case RNLO/LO . 1 if z . [τ/(µ2 e
η)]1/4. The validity region of our perturbative expansion

given by the union of regions (i) and (ii) is depicted in figure 8 (see the darker shaded

region there). Thus our approximation is valid in comparable intervals in τ and z near the

boundary of the AdS space.

On the other hand, in the calculation performed in this section for asymmetric pA

collisions, we resummed all-order graviton exchanges with the nucleus shock wave. There-

fore the applicability of this approximation does not require RNLO/LO . 1 for higher order

corrections bringing in powers of µ2. We do neglect all higher-order graviton exchanges

with the proton shock wave that bring in higher powers of µ1. Thus our pA approximation

is valid only if RNLO/LO . 1 for NLO corrections with µ2 → µ1 and η → −η in eq. (3.72).

The two regions (i) and (ii) become:

(i) z ≪ τ , τ . [1/(µ1 e
−η)]1/3, and

(ii) z ≫ τ , z . [τ/(µ1 e
−η)]1/4.

These new regions (i) and (ii) for pA collisions are shown in figure 8 by the lightly shaded

area. Indeed the validity of the pA approximation is much broader than that of the validity

of the perturbation series of section 2.

Importantly, the stopping time estimated in section 3.3.2, τstop ∼ [1/(µ2e
η)]1/3, lies

within the validity range of our approximation, as one can easily see from figure 8. Our

approach is valid for a comparably broad range of z’s at the stopping time, though for the

physics of the gauge theory in four dimensions only the knowledge of the metric in the

small-z region is needed.

4 Conclusions

Let us summarize our main results. In section 2 we constructed the NLO and NNLO

terms in the perturbative expansion in graviton exchanges for the collision of two shock

waves. Our expansion generalizes similar expansion constructed previously in [12] from the

delta-function-only case considered in [12] to the case of shock waves of arbitrary profile.

In particular we see that even the delta-prime shock waves, which at LO gave rapidity-

independent distribution of matter [1], lead to rapidity-dependent energy-momentum ten-

sor at NLO (see eq. (2.35)).

It is worthwhile noting that the perturbative graviton expansion of section 2 can be

built consistently without introducing a dilaton field. Hence at all orders of the solution

the dilaton field is zero. As the dilaton field is dual to the 〈trF 2
µν〉 operator in the gauge

theory at the boundary we conclude that for the collisions of shock waves considered here

〈trF 2
µν〉 = 0 (4.1)

at all times. Thus electric and magnetic modes are always equilibrated in this strongly-

coupled medium. This result should be contrasted with that of [53], where dilaton field

was needed to construct singularity-free pre-asymptotics to the Bjorken hydrodynamics
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metric of [51]. As our calculations show, the absence of a dilaton field in the initial shock

waves leads to no dilaton field throughout the collision. As it is difficult to construct shock

waves with non-zero dilaton field it is not clear how to construct shock wave collisions with

non-zero dilaton field in the forward light cone. Therefore the no-dilaton aspect of our

result may give one reasons to worry whether dual-Bjorken geometry of [51] is obtainable

at all in collisions of AdS shock waves.

In section 3 we have devised an eikonal resummation procedure, which resumed all

graviton rescattering in one nucleus while keeping only one graviton exchange with another

nucleus. The results for delta-function shock waves are given in eq. (3.38). As is clear from

eq. (3.38) the matter distribution obtained in the proton-nucleus approximation can not be

described by ideal hydrodynamics, and should be viewed as some intermediate stage of the

matter evolution towards isotropization. We also showed explicitly in section 3 that strong

interactions with the nucleus stop the proton completely, as can be seen from eq. (3.45).

The eikonal expansion for an asymmetric collision of two delta-prime shock waves ter-

minates at the level of two graviton-exchange with the nucleus. The results of the resum-

mation are shown in eq. (3.71). It is important to note that the energy-momentum tensors

for delta-function shock waves (3.38) and for delta-primes (3.71) are strongly rapidity-

dependent. It is unlikely that a matter distribution which is strongly rapidity-dependent

at early times would become rapidity-independent at late times: such behavior would be

acausal, as different rapidity regions become causally disconnected from each other as the

collision evolves. It is therefore probable that collisions of shock waves in AdS will lead to

a rapidity-dependent final state at late times: if, due to strong interactions, the matter in

this late-time state would be described by the ideal hydrodynamics, this hydrodynamic de-

scription can not be that of rapidity-independent Bjorken hydrodynamics [30]. While a full

(possibly numerical) study of the nucleus-nucleus collision in AdS would provide definitive

answer to this question, it is possible that Bjorken geometry gives a good approximation

to the dynamics of the matter produced in a collision of two identical nuclei only in a

narrow interval around mid-rapidity. Our results here can serve as a benchmark for further

(possibly numerical) studies of the collision of two shock waves beyond the asymmetric

approximation done here.

It may be that to obtain Bjorken hydrodynamics in a broader rapidity range one has

to abandon the idea of colliding shock waves in AdS, and try to simulate the initial stage

of the medium by matching the AdS metric onto the results for the energy-momentum

tensor known from weak-coupling CGC methods [24–29]. Such approach was advocated

in [14, 28, 75] and may prove to be quite fruitful. One possible shortcoming of the matching

method is in the fact that it leaves too much freedom in the choice of the early-time AdS

metric, leading to a possible loss of uniqueness in the description of the subsequent time-

evolution of the system. Further research is needed to understand which AdS approach is

better suited to describe heavy ion collisions.
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A Transverse pressure for delta-primes at NLO

We want to find the NLO contribution to the transverse pressure due to delta-prime sources.

Using eq. (2.25) we write

pNLO =
N2

c

2π2
H

(1)
0 (x+, x−) =

N2
c

2π2

[

− 6

(∂+ ∂−)2
ψ7 −

96

(∂+ ∂−)3
ψ9 −

2880

(∂+ ∂−)4
ψ11

]

(A.1)

where we used H
(1)
0 given by eq. (2.23a). Our goal is to evaluate the right hand side of

eq. (A.1) for t1 and t2 given by eq. (2.34). For simplicity we will evaluate the terms with

one power of t1 only: the remaining terms with only one power of t2 can be obtained by

the substitution t1 ↔ t2.

Using eqs. (2.19) along with eqs. (2.16) we write

− 6

(∂+ ∂−)2
ψ7 = −64

[

1

∂3
−

t1(x
−)

] [

1

∂2
+

t2(x
+)

1

∂3
+

t2(x
+)

]

+ (t1 ↔ t2). (A.2)

Using eq. (2.34) we get

1

∂3
−

t1(x
−) = Λ2

1

A
1/3

1
∑

i=1

(x− − x−i ) θ(x− − x−i ) ≈ Λ2
1A

1/3
1 x− θ(x−) (A.3)

for x− ≫ a1. Similarly we write

1

∂2
+

t2(x
+)

1

∂3
+

t2(x
+) = Λ4

2

A
1/3

2
∑

i,j=1

x+
∫

−∞

dx′+
x′+
∫

−∞

dx′′+δ′(x′′+ − x+
i )(x′′+ − x+

j )θ(x′′+ − x+
j )

= Λ4
2

A
1/3

2
∑

i,j=1

x+
∫

−∞

dx′+
[

δ(x′+ − x+
i )(x+

i − x+
j )θ(x+

i − x+
j ) − θ(x′+ − x+

i )θ(x+
i − x+

j )
]

≈ (Λ2
2A

1/3
2 )2

2
x+θ(x+), (A.4)

where in the last step we have used x+ ≫ a2. Combining eqs. (A.3) and (A.4) we obtain

− 6

(∂+ ∂−)2
ψ7 ≈ −32Λ2

1A
1/3
1 (Λ2

2 A
1/3
2 )2 x+ x− θ(x+) θ(x−) + (1 ↔ 2). (A.5)

Eqs. (2.19), (2.16) give

− 96

(∂+ ∂−)3
ψ9 = −576

[

1

∂3
−

t1(x
−)

] [

1

∂3
+

t2(x
+)

1

∂2
+

t2(x
+)

]

+ (t1 ↔ t2). (A.6)
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The only difference of eq. (A.6) with eq. (A.2) is in t2-dependent part, which is evaluated

to give

1

∂3
+

t2(x
+)

1

∂2
+

t2(x
+) = Λ4

2

A
1/3

2
∑

i,j=1

x+
∫

−∞

dx′+
x′+
∫

−∞

dx′′+
x′′+
∫

−∞

dx′′′+δ′(x′′′+ − x+
i )θ(x′′′+ − x+

j )

= Λ4
2

A
1/3

2
∑

i,j=1

x+
∫

−∞

dx′+
x′+
∫

−∞

dx′′+
x′′+
∫

−∞

dx′′′+

×
[

∂′′′+

(

δ(x′′′+ − x+
i )θ(x′′′+ − x+

j )
)

− δ(x′′′+ − x+
i )δ(x′′′+ − x+

j )
]

. (A.7)

The last term in the last line of eq. (A.7) is only non-zero when x+
i = x+

j , which is

only true if i = j as all the x+
i ’s are different. However, if i = j that term becomes a

delta-function squared. Regulating the infinity by the largest momentum scale in the

problem we replace δ(x+ = 0) → p−2 and get

1

∂3
+

t2(x
+)

1

∂2
+

t2(x
+) = Λ4

2

A
1/3

2
∑

i,j=1

x+
∫

−∞

dx′+
x′+
∫

−∞

dx′′+

×
[

δ(x′′+ − x+
i )θ(x+

i − x+
j ) − δijp

−
2 θ(x

′′+ − x+
i )
]

≈ (Λ2
2A

1/3
2 )2

2
x+θ(x+)

[

1 − p−2 x
+

A
1/3
2

]

(A.8)

for x+ ≫ a2. Combining eqs. (A.3) and (A.8) in eq. (A.6) we get

− 96

(∂+∂−)3
ψ9 = −288Λ2

1A
1/3
1 (Λ2

2A
1/3
2 )2x+x−θ(x+)θ(x−)

×
[

1 − p−2 x
+

A
1/3
2

]

+ (1 ↔ 2,+ ↔ −). (A.9)

(Indeed the delta function δ(x− = 0) should be regulated by p+
1 .)

Similar to the above one gets

− 2880

(∂+ ∂−)4
ψ11 = −2304

[

1

∂3
−

t1(x
−)

] [

1

∂4
+

t2(x
+)

1

∂+
t2(x

+)

]

+ (t1 ↔ t2)

= −576Λ2
1 A

1/3
1 (Λ2

2A
1/3
2 )2 x+ x− θ(x+) θ(x−)

p−2 x
+

A
1/3
2

+ (1 ↔ 2, + ↔ −). (A.10)

Using eqs. (A.5), (A.9), and (A.10) in eq. (A.1) yields the NLO contribution to the

pressure given in eq. (2.35).

B Iterations of delta-primes

We start by proving eq. (3.64) for

t2(x
+) = Λ2

2 δ
′(x+). (B.1)
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Evaluating one iteration of t2(1/∂+) operator acting on t2 we get

t2(x
+)

1

∂+
t2(x

+) = (Λ2
2)

2 δ′(x+) δ(x+) = (Λ2
2)

2

(

δ2(x+)

2

)′

. (B.2)

Similarly
(

t2(x
+)

1

∂+

)2

t2(x
+) = (Λ2

2)
3 δ′(x+)

δ2(x+)

2
= (Λ2

2)
3

(

δ3(x+)

3!

)′

. (B.3)

It is now straightforward to see what happens at each step of application of the t2(1/∂+)

operator to write
(

t2(x
+)

1

∂+

)n

t2(x
+) =

(Λ2
2)

n+1

(n+ 1)!

(

δn+1(x+)
)′
, (B.4)

which is exactly eq. (3.64), as desired.

Now let us prove eq. (3.66) for t2 from eq. (B.1). First of all use eq. (B.4) that we just

proved to write
(

t2(x
+)

1

∂+

)m

t2(x
+)

1

∂2
+

(

t2(x
+)

1

∂+

)n

t2(x
+) =

(Λ2
2)

n+1

(n+ 1)!

(

t2(x
+)

1

∂+

)m+1

δn+1(x+).

(B.5)

To evaluate
(

t2(x
+)

1

∂+

)m+1

δn+1(x+) (B.6)

we write
(

δ′(x+)
1

∂+

)m+1

= δ′(x+)
1

∂+
δ′(x+)

1

∂+
. . . δ′(x+)

1

∂+
= −

(

δ2(x+)

2

)′
1

∂+

(

δ′(x+)
1

∂+

)m−1

=

(

δ3(x+)

3!

)′
1

∂+

(

δ′(x+)
1

∂+

)m−2

= . . . = (−1)m
(

δm+1(x+)

(m+ 1)!

)′
1

∂+
.

(B.7)

In each step in eq. (B.7) we neglected a total derivative: it can be shown that those total

derivatives do not generate leading powers of p−2 . Eq. (B.7) gives

(

t2(x
+)

1

∂+

)m+1

δn+1(x+) = (Λ2
2)

m+1(−1)m
(

δm+1(x+)

(m+ 1)!

)′
1

∂+
δn+1(x+)

=
(−1)m+1(Λ2

2)
m+1

(m+ 1)!
δn+m+2(x+) =

(−1)m+1(Λ2
2)

m+1(p−2 )n+m+1

(m+ 1)!
δ(x+), (B.8)

where we again neglected the total derivative as it is subleading. In eq. (B.8) we have also

regularized the extra powers of δ(x+ = 0) by replacing them with p−2 .

Combining eqs. (B.8) and (B.5) yields
(

t2(x
+)

1

∂+

)m

t2(x
+)

1

∂2
+

(

t2(x
+)

1

∂+

)n

t2(x
+)=

(−1)m+1(Λ2
2)

n+m+2(p−2 )n+m+1

(n+ 1)! (m+ 1)!
δ(x+), (B.9)

which is exactly eq. (3.66).
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